Posts

Beschleunigungswerte aus dem Sensor umrechnen

Bild
Die Sensoren MPU6050 und BMA020 Es gibt zwei Varianten, wie der Winkel errechnet werden kann. Als erstes Beispiel nehmen wir für einen Winkel von 90° einen imaginären Messbereich von 0 bis 100, der die Y Achse darstellt. Visuelle Darstellung der Achsenausrichtung. Dann könnte die Formel “(MaxWert / 90°) x Messwert = Winkel” lauten. Die Umsetzung ist relativ naheliegend und kann schnell im Programmcode geschrieben werden. // Variable mit dem Messwert int reading = 0; // Ergebnis = (Maximaler Wert / 90°) * Messwert double result = (100 / 90) * reading; Messbereich von 0 bis 100 Je nach Sensor ergeben sich andere maximale Wert. Beim MPU6050 geht der Messbereich von 0 bis 65535 und in Abhängigkeit, welche Einstellung gesetzt wurde, ergibt sich der “MaxWert”. Wenn z.B. der Sensor auf 8G initialisiert wurde, dann muss der Wert durch 8 geteilt werden und erhält somit den MaxWert = 8192. Dieser Wert wird erreicht, wenn die Achse 1G misst. // Variable mit dem Messwer...

DLPF einstellen für den MPU6050

Bild
Kleiner Versuchsaufbau mit Sensor und Brushless Motor Auf einem Quadrocopter sorgen die Motoren für viel Vibrationen, die sich ohne einen Filter auf den Sensor negativ auswirken. Über ein Verlaufsdiagramm über die Beschleunigung und die Winkelgeschwindigkeit kann man deutlich hoch frequentierte Abweichungen sichtbar machen. In einem meiner ersten Tests hatte ich die Funktion DLPF (Digitaler Low-Pass Filter) vom Sensor nicht eingeschaltet und wunderte mich zunächst, warum die Lage nicht reguliert wurde. Also erweiterte ich mein Programm zur Analyse und sah dann das Problem. Das nächste Bild zeigt den Sensor stillliegend mit laufendem Motor. Die schwarze Linie zeigt die Rohdaten an, die grüne Linie zeigt das Ergebnis nach einer Glättung an. Die Vibrationen vom Motor erschweren es, die eigentlich Lage festzustellen, die der Sensor wirklich hat. Zuvor kannte ich die Lösung von analogen Tiefpassfiltern. In der Digitaltechnik sieht das etwas anders aus. Es ist ein zeitkritische...

Abstandsmessungen mit dem Netduino

Bild
Links: HC-SR04 Ultraschall Sensor, Rechts: GP2-1080 Optischer Sensor Für die Abstandsmessung kann wahlweise ein Ultraschall- oder ein optischer Sensor verwendet werden. Naja beides könnte man auch verwenden, es kommt aber auf die Anwendung an: Welche Entfernungen muss ich messen können? In welcher Umgebung wird agiert? Wie sieht es mit Störfaktoren aus? Wie viel darf der Sensor kosten? Was nun von beidem besser ist, möchte ich hier nicht begründen, da beide Varianten eine Daseinsberechtigung haben. Für einen richtigen Vergleich hätte ich allerdings mehr einkaufen müssen, daher ist meine Vergleichstabelle nur als Ansatz gedacht.   HC-SR04 GP2-1080 Betriebsspannung 5V 4,5V-5,5V Stromaufnahme 15mA 33mA Messung erfolgt Abstand von Trigger Puls bis Echo Puls Ergebnis wird als Analoges Spannungssignal ausgegeben Distanzmessung 2cm - 400cm 10cm – 80cm Nachteile Kann durch Geräusche gestört werden Funktioniert auf Reflektierenden Oberflächen nicht V...

PWM Signal Einlesen mit dem Netduino

Bild
Der Empfänger am Netduino Es gibt zwei Lösungen, wie man ein PWM Signal einlesen kann. Über eine RC Schaltung mit der “AnalogInput” Klasse oder vollständig programmatisch. Wenn keine Bauteile wie Widerstand und Kondensator vorhanden ist, dann erübrigt sich das letztere. Beim Arduino kennt man bereits aus der Library die Methode ‘pulseIn()’. Leider wurde das für den Netduino noch nicht umgesetzt. Alternativ bleibt die Möglichkeit, die sich ändernden Pulszustände zeitlich zu messen und das geht hervorragend mit der “InterruptPort” Klasse. /// <summary> /// Dieses Klasse ermöglicht das genaue Einlesen des eingehenden Pulssignals /// </summary> private static InterruptPort _IntPort = new InterruptPort (     Pins . GPIO_PIN_D0 ,     true ,     Port . ResistorMode .Disabled,     Port . InterruptMode .InterruptEdgeBoth); /// <summary> /// Wird verwendet um den Startzeit des Pulssignals zu merken /// ...

Monzoom Pro Rückblick

Bild
Raumschiff U.S.S.Adler   Das Programm hieß vor seiner Umbenennung Reflection und war (glaube ich) ein beliebtes Werkzeug zum modulieren, texturieren und animieren in den 1990iger Jahren. Radpanzer   Während meiner Schulzeit habe ich viele Modelle entworfen oder andere Objekte nachgemacht. Das Programm begleitete mich bis 2002 und zwang meinen PC in die Knie, wenn ich eine Filmsequenz gerendert habe. Angler am Strand 3D   Letztes Jahr habe ich in meiner Datensicherung meine gesammelte Arbeit wiedergefunden und ich dachte, dass rendere ich mal in High Definition. Wer bereits die Videos gesehen hat, die ich auf meinem Blog gepostet habe, dürfte sich an einen Pixelhaufen erinnern. Früher hatte ich nur einen Pentium 300MHz PC, mit einer Eraser III und 64MB Arbeitsspeicher (später jedoch auf 192MB aufgerüstet). Nun denn, genug Nostalgie. Ein zusammenschnitt der 3D Animationen mit Monzoom Pro in HD Auflösung.

Daten vom Arduino verarbeiten und visualisieren

Bild
Arduino Nano 3.0 und der Magnet Sensor HMC5883L. Gelb=SDA (Pin4), Orange=SCL (Pin5), Rot=+5V und Schwarz=GND Wenn ich keine Lösung für dem Netduino habe, dann finde ich eine für Arduino. Eines meiner ersten Programme war eines zum Lesen der Sensordaten. Zunächst verwendete ich den Arduino Monitor, der allerdings nichts anderes tat, als eine serielle Verbindung herzustellen. Mit ein “wenig” C# und .NET Framework Kenntnis kann auch ein eigenes Programm geschrieben werden, das die Daten ebenfalls lesen kann. Mein neues Bespiel zeigt die magnetischen Einflüsse auf 3 Achsen an, was ich mit Hilfe von Windows Forms visualisiere. Windows Forms mit analoger Anzeige Warum Windows Forms? Die GUI ist schon etwas in die Jahre gekommen und bietet kaum Neuerungen, dennoch kann man grafisch immer noch etwas an Ergebnissen erreichen. Also wäre es doch schön, eine analoge Anzeige auf digitalem Boden zu schaffen. Aber erstmal eins nach dem anderen. Auf der Seite Gihub stellt der Entwickler ...

Arduino Nano 3.0 und MPU6050 in Quellcode Kurzfassung

Bild
Verkabelungsbeschreibung ist am ende dieses Blogs. Bereits Anfang des Jahres habe ich eine Lösung in C#  und .NET Micro Framework geschrieben. Ursprünglich habe ich die Lösung aus der in C++ geschriebenen Library portiert ( Library für Arduino ). Zuvor suchte ich nach einem kürzeren und funktionalem Beispiel, aber ohne Erfolg. Da ich nun selbst relativ gut mit dem Sensor vertraut bin, konnte ich ein kürzeres Beispiel für den Arduino schreiben. #include < Wire .h> #define sensor_address 0x68 void setup () {   // 9600 Baut reichen zum Betrachten aus.   Serial.begin (9600);   Wire.begin ();   delay (1000);     // Powermanagement aufrufen   // Sensor schlafen und Reset, Clock wird zunächst von Gyro-Achse Z verwendet     Serial.println ( "Powermanagement aufrufen - Reset" );   SetConfiguration(0x6B, 0x80);     // Kurz warten   delay (500);     // Powermanagement aufrufen   // Sleep beende...